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This paper is devoted to an analytical model for the prediction of impact resistance

and damage tolerance properties of cylindrical composite shells by pursuing the energetic

approach. At the most fundamental level, the existing theories of thin elastic shells are

unified with each other. The snap-through buckling problem is subsequently solved through

a large deflection analysis. After that, the impact induced damage development process

is analyzed by using the fracture and damage mechanics concepts that form a synergetic

combination. For the residual compression strength, a new theory is proposed, where the

emphasis is placed on the identification of the lowest buckling mode and the derivation of

a complete postbuckling solution. The model is verified by a series of curved panel impact

and compression-after-impact experiments, and a good agreement is found to exist between

the theoretical and experimental results.
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Nomenclature

a Shell length or major semi-axis of ellipse

A Extensional stiffness or crack area

b Curved shell width or minor semi-axis of ellipse

D Bending stiffness

E Elastic modulus or impact energy

G Energy release rate

h Shell thickness

K Membrane stiffness or curvature parameter

l Characteristic shell length

M Bending moment per length unit

N Normal force per length unit

P Impact load

q Distributed load

R Shell radius

S Area of damage zone

u In-plane displacement

U Strain energy

v In-plane displacement

w Out-of-plane displacement

γ Shear strain

δ Deflection

ϵ Normal strain

ζ Energy reduction factor

θ Orientation angle of delamination

κ Change in curvature

λ Ellipticity ratio

Λ Objective function for minimization

ν Poisson’s ratio

σ Normal stress

τ Shear stress

φ Airy stress function

Ψ Membrane stiffness parameter
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I. Introduction

With fiber reinforced composite materials being increasingly used in primary aircraft structures, accurate

prediction methods for impact resistance and damage tolerance properties of composite structures become

more and more important for an effective and efficient design process. The closed form analytical solutions

are evidently of great fundamental and practical interest; as they not only provide a clear understanding of

the underlying physics, but also reduce the computational expense tremendously in comparison with finite

element calculations. By means of the plate theory, linear elastic fracture mechanics (LEFM) and theory

of elastic stability, an analytical model has been formulated for flat plates subjected to low velocity impact

and post-impact compression in the previous study (see Huang et al.1). Compared with the experimental

results, the model appears to be capable of giving realistic predictions of the delamination threshold load,

the resulting damage area and the residual compression strength for different flat plates.

There now arises the question whether the flat plate model is directly applicable to cylindrical shells, as

thin-walled shell structures are more frequently encountered in the aerospace applications, for example in the

fuselages and wings (see Raymer2). Ambur and Starnes3 conducted impact and compression-after-impact

(CAI) tests on thin quasi-isotropic cylindrical graphite-epoxy shells, it was found that the peak contact force

and the CAI residual strength are curvature dependent. Wardle and Lagace4 performed quasi-static and

impact tests on cylindrical graphite-epoxy shells, they came to the conclusion that the extent of damage is

dependent of the peak contact load and the snap-through buckling phenomenon during the impact events

significantly affects the damage development. These experimental findings suggest that the flat plate model,

which is valid for the special limiting case of shells having no curvature, will not be appropriate for general

cylindrical shells. This provides the motivation to build upon and extend the previous model, whilst still

retaining the essential simplicity of the original. The objective of the present study is to develop a reliable

and robust analytical model for the impact resistance and damage tolerance characteristics of thin cylindrical

shells by adopting the energetic approach. It can be expected that a number of difficult and long-standing

problems have to be solved to accomplish the intended model.

The first challenge faced in this study is the unification of theories for thin elastic shells. On the basis of

different simplifying assumptions, different investigators have developed different shell theories (see Flügge5,

Koiter6 and Sanders7, Love8, Morley9, Simmonds10, Donnell11, Lord Rayleigh12). For a comprehensive

review of the existing shell theories, the reader is referred to Leissa13. The essence of the shell theories is

that a complex three-dimensional elasticity problem is consistently reduced to a workable two-dimensional

problem by using the Kirchhoff hypotheses14 that proved successful for flat plates. Among the investigators
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in this field, it has been a subject of considerable discussions about the consistent treatment of small terms

in a purely mathematical sense, i.e. which terms can be retained and which can be neglected, or whether

they are of the same order. Since the complexity of a shell theory depends strongly on the behavior of the

infinitesimal shell elements, one has to take a new perspective and start to think over whether the infinitesimal

elements that are basically points from a geometrical standpoint should have a curved or squared shape.

The second challenge is to come to a full understanding of the large deflection behavior of cylindrical

shells. It is still unclear what precisely happens, when a cylindrical shell undergoes the snap-through buckling.

This kind of problem is usually solved through sophisticated numerical simulations, where the arc-length

method is employed, as the powerful Newton-Raphson method becomes unstable in the neighborhood of

the limit point (see Riks15). Using the Galerkin method, an analytical solution has been derived for the

snap-through buckling of a uniformly compressed cylindrical shell that behaves like a circular arch (see

Ventsel and Krauthammer16). This gives a valuable clue that the snap-through buckling problem must be

analytically solvable for more complex cases.

The third challenge is a large-scale reformation of the buckling and postbuckling theory of cylindrical

shells. As is known, the Lorenz17 theory overestimates the actual buckling strength to a large extent. This

has led to the development of theories which believe that the initial imperfections are the most influential

contributor to the discrepancy between the predictions and measurements (see Timoshenko & Gere18). A

linearized buckling theory is only in a position to predict the first equilibrium path up to the bifurcation

point. The initial postbuckling theory of Koiter19 is a higher order linearization that permits determination

of the slopes and the curvature of the second equilibrium path at the bifurcation point. As the name implies,

for general cylindrical shells, the theory is not valid for the second equilibrium path well in excess of the

initial buckling load. Furthermore, it would be a laborious task to extend this complicated theory to an

anisotropic version. This necessitates the construction of a simpler and deeper theory for the buckling and

postbuckling behavior of cylindrical shells.

II. Fundamentals

The two cornerstones of a shell theory are the elasticity theory and the differential geometry. The elasticity

theory delivers the three sets of fundamental equations concerning the static equilibrium, the constitutive

behavior and the compatibility conditions. Using the differential geometry, the strain displacement relations

can be derived in a rigorous way. The equations obtained are solved for the given boundary conditions,

where both the mathematical techniques and the mechanical intuition are indispensable.
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A. Brief Outline of Shell Theories

Among the aforementioned shell theories, Love’s theory is a general and elegant theory, with which the

stress, strain, and displacement fields can be adequately predicted under the small deflection condition. For

anisotropic shells, Love’s theory can be used in conjunction with the classical lamination theory (CLT), which

characterizes the constitutive behavior of a laminate with the familiar ABD matrix by way of the Kirchhoff-

Love hypotheses (see Jones20). Compared with Flügge’s theory, the infinitesimal elements are essentially flat

in Love’s theory; therefore, the curvature related couplings between the extension, shear, bending and twist

deformations are neglected on the scale of the infinitesimal elements. Compared with Koiter-Sanders theory,

the rotation of the infinitesimal elements around the normal is neglected in Love’s theory. For cylindrical

shells, Morley’s theory is derived from Flügge’s theory, and Simmonds’ theory is derived from Koiter-Sanders

theory. These simplified theories give practically the same predictions as the original theories, but a clear

physical meaning has not been assigned to the higher order terms neglected. If it can be substantiated that

the theories of Love, Morley and Simmonds are equivalent to each other for cylindrical shells, it can be

established that the geometrical coupling effects and the rotational effects in the infinitesimal elements are

secondary effects in relation to the primary effects due to stretching and bending. In this way, the different

shell theories can be unified with each other. When the wavelength of the deformation pattern is sufficiently

small, Donnell’s theory, which can be deduced from Love’s theory by neglecting the influence of the in-plane

displacements on the curvature changes, represents the simplest valid form. Lord Rayleigh’s inextensional

deformation theory applies to the special cases in which the shell deformations consist primarily in bending.

For a large deflection analysis, the geometrical non-linearity in the membrane deformations can be taken into

account by using von Kármán strains21 that can be viewed as sort of simplified Green-Lagrange strains. It

can still be assumed that the curvature changes are linear functions of the displacements, as the membrane

and bending deformations are related to the first and second fundamental form of the shell middle surface,

respectively. The shell theories are a two-dimensional analogue of the one-dimensional Euler-Bernoulli beam

theory, and are therefore not applicable to the open shells that undergo significant warping owing to torsion.

For the rest, the theories incorporating the transverse shear and normal stress effects and the specialized

theories for shells of revolution are left out of consideration in this study.

B. Membrane Problem

Consider a doubly curved composite shell, the principal radii of curvature are R1 and R2, the orthogonal

curvilinear coordinates x and y follow the lines of curvature, and the positive z direction coincides with the

inward direction. For the constitutive behavior of the laminate, the following equation is valid in accordance
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with the CLT: ⎧
⎪⎨
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(1)

where {N}, {M}, {ϵ} and {κ} are the vectors of resultant membrane forces, resultant bending moments,

membrane strains and curvature changes, respectively; [A], [B] and [D] are the extensional stiffness matrix,

the bending-extension matrix and the bending stiffness matrix, respectively. In light of practical structural

applications, the laminate is supposed to have a symmetrical and balanced lay-up. This means that the

bending-extension coupling does not occur, nor does the shear-extension coupling occur, i.e. A16 = A26 = 0,

[B] = [0]. When the laminate is fabricated solely of 0◦ and 90◦ laminae, the bend-twist coupling does not

occur, i.e. D16 = D26 = 0. If the laminate has off-axis plies, the bend-twist coupling can be diminished

by increasing the number of ply groups. For the in-plane equilibrium, an Airy stress function φ can be

introduced for the resultant membrane forces Nx, Ny and Nxy:

Nx =
∂2φ

∂y2
, Ny =

∂2φ

∂x2
, Nxy = − ∂2φ

∂x∂y
(2)

Adding the non-linear terms to Love’s strain displacement relations, the following equations can be set up:

ϵx =
∂u

∂x
− w

R1
+

1

2

(
∂w

∂x

)2

= S11
∂2φ

∂y2
+ S12

∂2φ

∂x2
(3)

ϵy =
∂v

∂y
− w

R2
+

1

2

(
∂w

∂y

)2

= S12
∂2φ

∂y2
+ S22

∂2φ

∂x2
(4)

γxy =
∂v

∂x
+

∂u

∂y
+

∂w

∂x

∂w

∂y
= −S66

∂2φ

∂x∂y
(5)

where u and v are the in-plane displacements, w is the out-of-plane displacement, and [S] is the compliance

matrix with [S] = [A]−1. Eliminating u and v yields the biharmonic equation for the plane stress problem:

∇ 4
Sφ =

(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2
− 1

R2

∂2w

∂x2
− 1

R1

∂2w

∂y2
(6)

where the differential operator ∇ 4
S is defined as:

∇ 4
S() = S22

∂4

∂x4
+ 2J

∂4

∂x2∂y2
+ S11

∂4

∂y4
with J = S12 +

S66

2
(7)

In this way, a set of equations concerning the equilibrium, constitutive and compatibility of the shell is reduced

to one single equation. The homogenous solution of differential equation (6) describes the characteristic in-

plane behavior of the system, e.g. from ∇ 4
Sφ = 0, the distribution of the membrane stresses around a hole
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in a laminate can be solved. The particular solution represents the forced response of the system to the

out-of-plane displacement field w. In spite of the fact that the geometrical couplings are neglected on the

scale of the infinitesimal elements, the in-plane and out-of-plane displacements are generally coupled to each

other on the global structural scale because of the geometrical non-linearity and the initial curvature.

C. Bending Problem

The counterpart of the membrane problem, the bending problem, is discussed on the basis of a cylindrical

shell, since the equations can be readily extended to a doubly curved shell. For the moment equilibrium of

an infinitesimal shell element, the following equation can be set up:

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
− Ny

R
= q (8)

where R is the shell radius and q is the transverse load. According to Love, the equations for the curvature

changes that strictly conform to the differential geometry are as follows:

κx =
∂2w

∂x2
, κy =

1

R

∂v

∂y
+

∂2w

∂y2
, κxy =

1

R

∂v

∂x
+ 2

∂2w

∂x∂y
(9)

In Lord Rayleigh’s theory, the expression of κxy does not contain the factor 2, as the term
∂2w

∂y∂x
was not

allowed for during the derivation. Using equations (1) and (9), the bending equation (8) can be rewritten in

the form of a biharmonic equation:

∇ 4
Dw +

1

R
∇ 2

d

(
∂v

∂y

)
= q +

1

R

∂2φ

∂x2
(10)

where the bend-twist coupling is neglected to facilitate the analysis, and the differential operators ∇ 4
D, ∇ 2

d

and the constant H are defined as:

∇ 4
D() = D11

∂4

∂x4
+ 2H

∂4

∂x2∂y2
+D22

∂4

∂y4
, ∇ 2

d () = H
∂2

∂x2
+D22

∂2

∂y2
, H = D12 + 2D66 (11)

Neglecting the influence of the circumferential strain ϵy on the curvature changes with ∂v/∂y ≈ w/R,

equation (10) can be simplified to:

∇ 4
Dw +

1

R2
∇ 2

dw = q +
1

R

∂2φ

∂x2
(12)

Setting R → ∞, it can be seen that the biharmonic part is associated with the transverse loading q. The

Laplacian part can be linked up with the distributed moment produced by the circumferential membrane
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stress Ny, where the out-of-plane displacement w exhibits typically a very slow decay behavior. Although

the membrane and bending problem can be mathematically formulated as two separate problems, the two

problems are coupled to each other because of the coexistence of the membrane and bending deformations.

D. Equivalency of Theories

To provide a simple proof, the equivalency validation is restricted to the small deflection analysis of an

isotropic cylindrical shell, as the differences between the theories are known to exist mainly in the bending

problem. Discarding the non-linear terms, the biharmonic membrane equation (6) becomes:

∇4φ = −Eh

R

∂2w

∂x2
(13)

where E is the Young’s modulus. Combined with the Laplace equation ∇2φ = 0 that means a state of zero

hydrostatic deformation (no volume change), equation (13) can be put in the following form:

∇4φ+
1

R2
∇2φ = −Eh

R

∂2w

∂x2
(14)

On the basis of the isotropy, the biharmonic bending equation (12) can be simplified to:

∇4w +
1

R2
∇2w =

q

D
+

1

RD

∂2φ

∂x2
(15)

where D is the flexural rigidity. It can be observed that equations (14) and (15) are identical to Simmonds’

equation using a complex-valued displacement-stress function.

Substituting equation (13) into equation (15), the following eighth order differential equation can be

obtained, showing that the applied load is carried through a combination of bending and stretching actions:

∇4
(
∇4 +R−2∇2

)
w + 4C4 ∂

4w

∂x4
=

1

D
∇4q, 4C4 =

12(1− ν2)

R2h2
(16)

where ν is the Poisson’s ratio, h is the shell thickness. Adding R−2∇2
(
∇4 +R−2∇2

)
w = 0 to equation (16)

yields Morley’s equation:

∇4
(
∇2 +R−2

)2
w + 4C4 ∂

4w

∂x4
=

1

D
∇4q (17)

From equation (15), it can be seen that the homogenous equation
(
∇4 +R−2∇2

)
w = 0 describes actually

the deflection behavior of the shell in the absence of the transverse loading and the circumferential stretching.

A practical example is the deflection produced by a moment along the edge, which can be specified through

the boundary condition in equation (16).
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Taken together, it has been demonstrated that the theories of Love, Morley and Simmonds are equivalent

to each other. It is clear that Love’s theory truly deserves the designation of the classical shell theory, as

the mathematical exactness is perfectly balanced with the responsible simplifications in this theory. The

more complex theories of Flügge, Koiter and Sanders are more favorable for finite element analyses, where

the effects of geometrically couplings and rotations about the normal have to be taken into account in the

discrete elements.

E. Donnell’s Simplified Theory

By neglecting the terms ∂v/∂x and ∂v/∂y, Donnell’s expressions for the curvature changes become similar

to those in the plate theory:

κx =
∂2w

∂x2
, κy =

∂2w

∂y2
, κxy = 2

∂2w

∂x∂y
(18)

For the linear analysis of an anisotropic cylindrical shell, the biharmonic equations (6) and (12) reduce to:

∇ 4
Sφ = − 1

R

∂2w

∂x2
, ∇ 4

Dw = q +
1

R

∂2φ

∂x2
(19)

Combining the equations above with each other, the generalized equation of Donnell can be written as:

∇ 4
S∇ 4

Dw +
1

R2

∂4w

∂x4
= ∇ 4

Sq (20)

In the isotropic case, Donnell’s equation reads:

∇8w + 4C4 ∂
4w

∂x4
=

1

D
∇4q (21)

Introducing the non-dimensional parameters:

ϱ =
x

R
, ϕ =

y

R
, 4c4 = 12(1− ν2)

R2

h2
(22)

and taking an eigenfunction in the form:

w = epϱ cosnϕ (23)

the characteristic equations of Donnell’s equation (21) and Morley’s equation (17) become:

Donnell : (p2 − n2)4 + 4c4p4 = 0

Morley : (p2 − n2)2(p2 − n2 + 1)2 + 4c4p4 = 0

(24)

9 of 41

American Institute of Aeronautics and AstronauticsSampe Conference, Beijing China, 6-8 May 2019 



If n ≥ 4, then 1 can be neglected in relation to n2, Morley’s equation that covers the complete range of

wavelengths reduces to Donnell’s equation; and if n ≫
√

2/3c2, then the term 4c4p4 can be neglected,

Donnell’s equation reduces further to the flat plate equation in the cylindrical coordinates (see Figure 1). In

Lord Rayleigh’s theory, the term 1 is unnecessarily retained, as it hardly affects the outcome when the term

4c4p4 can be neglected. For an extremely small thickness h, the term ∇8w can be neglected, and Donnell’s

equation reduces to a membrane equation. It can be construed that Donnell’s theory is sufficiently accurate

for technical applications, as long as the wavelength of the deformation pattern does not exceed a quarter of

the shell circumference. For a symmetrically loaded full cylindrical shell (n = 0), Donnell’s theory is exact,

since there holds v = 0. The frequently used name in the literature, “the shallow shell approximation”,

might be said to be imprecise. Despite the restricted applicability, Donnell’s theory, the engineering shell

theory, has reached the stage of ultimate simplicity.

n = 0 n = 1 n = 2 n = 3 n = 4 n > 4

Figure 1. Eigenfunction w = epϱ cosnϕ with varying n for ϱ = 0

F. Energy Functional

For a laminated shell having a symmetrical and balanced lay-up, the total strain energy is given by:

U =
1

2

∫∫

S

(
S11N

2
x + 2S12NxNy + S22N

2
y + S66N

2
xy

)
dxdy

+
1

2

∫∫

S

(
D11κ

2
x + 2D12κxκy +D22κ

2
y +D66κ

2
xy

)
dxdy

+
1

2

∫∫

S
(2D16κxκxy + 2D26κyκxy) dxdy

(25)

For the membrane energy, the forces Nx, Ny and Nxy can be calculated from the stress function φ using

equation (2). For the bending energy, the curvature changes κx, κy and κxy can be calculated from the

displacements u, v and w using the following formulas of Love:

κx =
1

R1

∂u

∂x
+

∂2w

∂x2
, κy =

1

R2

∂v

∂y
+

∂2w

∂y2
, κxy =

1

R1

∂u

∂y
+

1

R2

∂v

∂x
+ 2

∂2w

∂x∂y
(26)

If the out-of-plane displacement field w is symmetrical with respect to the x and y axes, it is expected that

the D16 and D26 terms vanish in equation (25), as the displacement field does not contain the asymmetrical
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bending deformation components that arise out of the bend-twist coupling. The energy functional (25) that

contains the full information of the three sets of the elasticity equations is of use for many purposes: The

shell deflection problems can be dealt with by means of the principle of virtual work. The shell buckling

problems can be solved through the principle of critical energy, which states that buckling occurs, when

the work performed by the membrane forces due to the lateral deflections equals or exceeds the total strain

energy that is associated with the lateral deflections. The shell vibration problems can be formulated on the

basis of Hamilton’s principle; however, this topic lies beyond the scope of this study.

III. Localized Snap-through Buckling

Before describing the main body of the impact resistance and damage tolerance analysis, it is useful to

discuss the snap-through buckling problem, particularly the reversal of curvature of the shell surface in an

elliptic domain that is sufficiently remote from the shell edges. This form of localized snap-through buckling

is a basic deformation mechanism in thin elastic shells. Hence, the analytical solution obtained is expected to

find many applications in structural analyses. For the impact modeling, the solution plays an important role

in the determination of the energy release rate that drives the crack extension. For a complete cylindrical

shell under axial compression, the solution provides a “Rosetta stone” for understanding the buckling process.

A. Membrane and Bending Energy

Consider a doubly curved shell in the curvilinear coordinates x and y, the principal radii of curvature are

R1 and R2. The elliptic region that has curved semi-axes a0 and b0 is subjected to a uniformly distributed

load q. It is supposed that the elliptic shell segment is simply supported in the out-of-plane directions by

the surrounding shell (see Figure 2).

a0
b0

q

x

y

R1

R2

Figure 2. Uniformly loaded elliptic domain

Substituting the following displacement field w into the biharmonic membrane equation (6):

w = w0

(
1− x2

a20
− y2

b20

)
(27)

11 of 41

American Institute of Aeronautics and AstronauticsSampe Conference, Beijing China, 6-8 May 2019 



gives a biharmonic equation with a constant right-hand side:

∇ 4
Sφ =

2w0

a20b
2
0

(
a20
R1

+
b20
R2

− 2w0

)
(28)

The function w stems from an elliptic isotropic plate that is simply supported along the edge and uniformly

loaded in the lateral direction (see Timoshenko and Woinowsky-Krieger22). A suitable expression for the

Airy stress function that satisfies the simply supported boundary condition is:

φ =
w0

4Υ

(
a20
R1

+
b20
R2

− 2w0

)(
1− x2

a20
− y2

b20

)2

(29)

where the parameter Υ and the ellipticity ratio λ0 are given by:

Υ = 3λ2
0S22 + 2J + 3λ−2

0 S11, λ0 =
b0
a0

(30)

Integrating over the elliptic domain, the membrane energy Um becomes:

Um =
π2w2

0

12SΥ

(
a20
R1

+
b20
R2

− 2w0

)2

(31)

where S is the area of the elliptic shell segment, S = πa0b0.

Employing the simplifications ∂u/∂x ≈ w/R1 and ∂v/∂y ≈ w/R2, the curvature change expressions from

Love’s theory can be rewritten as:

κx =
w

R2
1

+
∂2w

∂x2
, κy =

w

R2
2

+
∂2w

∂y2
, κxy =

1

R2
1

∂

∂y

∫
wdx+

1

R2
2

∂

∂x

∫
wdy + 2

∂2w

∂x∂y
(32)

Neglecting the higher order terms containing R−4
1 , R−2

1 R−2
2 and R−4

2 , the bending energy Ub is found to be:

Ub =
2π2(Φ − Φ′)w2

0

S
(33)

where the parameters Φ and Φ′ are given by:

Φ = λ2
0D11 + 2D12 + λ−2

0 D22 (34)

Φ′ =
a0b0
2

[
λ0

R2
1

D11 +

(
λ−1
0

R2
1

+
λ0

R2
2

)
D12 +

λ−1
0

R2
2

D22

]
(35)
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Hence, the total strain energy U becomes:

U =
π2w2

0

12SΥ

(
a20
R1

+
b20
R2

− 2w0

)2

+
2π2(Φ − Φ′)w2

0

S
(36)

If it can be assumed that R1 ≫ a0 and R2 ≫ b0, then Donnell’s theory can be applied instead of Love’s

theory, and the parameter Φ′ becomes automatically equal to 0.

B. Load Deflection Relationship

The relationship between the distributed load q and the maximum deflection w0 can be derived on the basis

of the principle of virtual displacements:

dU

dw0
δw0 =

∫∫

S
qδw0

(
1− x2

a20
− y2

b20

)
dxdy (37)

From equation (37), it follows that:

3ΥS2q

π2h3
= 8

w3
0

h3
− 6

(
a20
R1h

+
b20
R2h

)
w2

0

h2
+

(
a20
R1h

+
b20
R2h

)2
w0

h
+

24Υ(Φ − Φ′)

h2

w0

h
(38)

where the membrane deformations are represented by a third degree polynomial, the bending deformations

are represented by a linear function. Introducing the following non-dimensional parameters:

q̄ =
3ΥS2q

π2h3
, w̄0 =

w0

h
, k1 =

a20
R1h

+
b20
R2h

, k2 =
24Υ(Φ − Φ′)

h2
(39)

equation (38) can be rewritten as:

q̄ = 8w̄3
0 − 6k1w̄

2
0 +

(
k21 + k2

)
w̄0 (40)

The displacements at the local maximum and minimum load can be found through:

∂q̄

∂w̄0
= 0 ⇒ 24w̄2

0 − 12k1w̄0 + k21 + k2 = 0 (41)

The localized snap-through buckling occurs, when equation (41) has two different rational roots:

k21 > 2k2 (42)

w̄0 =
k1
4

(
1±

√
1

3
− 2k2

3k21

)
(43)
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Substituting the two roots into equation (40), the critical buckling load and the minimum load after buckling

can be obtained:

q̄cr =
k31
4

[
k2
k21

∓
(
1

3
− 2k2

3k21

) 3
2

]
(44)

In practice, these two loads may be considered as the upper and the lower bound of the critical buckling

load, as a jump can take place from the first equilibrium path through the instability region to the second

equilibrium path.

In Figure 3, the non-dimensional load q̄ is plotted against the non-dimensional deflection w̄0 for different

k1 and k2 values. The left-hand graph is produced without bending deformations. When both R1 and R2

tend to infinity, the localized snap-through buckling does not occur, resulting in a monotonically increasing

load deflection curve. For non-zero k1 values, the load deflection curves can be divided into the following

three parts that are characteristic of the snap-through buckling: the softening first equilibrium path, the

instability region with a negative stiffness and the stable second equilibrium path. The right-hand graph

is produced for general situations with both membrane and bending deformations. It shows that the snap-

through buckling instability does not occur for small k1 values, and the S-shaped curves are more precisely

termed the geometrically non-linear behavior.

Up to now, the snap-through buckling problem has been discussed. For the buckling instability due to

bifurcation, two different deformation mechanisms start to interact with each other because of the geometrical

non-linearity, e.g. the in-plane compression leads to a sudden out-of-plane deflection in the classical Euler

problem. As a matter of fact, the snap-through buckling has broadened the scope of the concept buckling,

since this form of buckling is basically a limit point instability, where the membrane deformations start

change from the compressive to the tensile state.
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Figure 3. Non-dimensional load deflection curves
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IV. Impact Induced Damage Development

When composite shell structures are subjected to low velocity impact, three major damage mechanisms

that occur at the macromechanical scale are matrix cracking, internal delamination and fiber breakage.

Focusing on the barely visible impact damage (BVID), the fiber breakage mode that plays an important

role in the through penetration of laminates is left out of consideration. The matrix cracks that align

parallel to the fibers and span the thickness of the plies lead to the elastic property degradation of the plies

in the transverse or shear direction. The delaminations that break the base laminate into unsymmetrical

sublaminates are known to dramatically reduce the laminate bending stiffness. Under the localized impact

loading, the formation of the damage zone that contains an interconnected network of matrix cracks and

delaminations implies the occurrence of a localized deformation field that is embedded within the global

deformation field in the shell structure. On the basis of the global deformation field, a failure analysis can be

performed for the matrix cracking in the individual plies. From the uncoupled localized deformation field,

the strain energy released from the system can be calculated; and the energy balance for the delamination

growth can then be established on the basis of the LEFM. In doing so, the existing plate impact model can

be extended to a shell impact model, whereby the delamination is regarded as the primary failure mode and

the matrix cracking as the secondary failure mode. Because of the highly localized nature of the phenomena,

the remainder of this paper will make use of Donnell’s theory in order to reduce the complexity of obtaining

equations, while preserving acceptable accuracy.

A. Delamination Threshold Load

From the foregoing discussion in Section II, it is evident that a shell behaves like a plate, when the wavelength

of the deformation pattern is sufficiently small. For this reason, the delamination threshold load that was

derived for a quasi-isotropic plate is universally applicable for laminated composite structures, since the

size of the initial delamination is by definition exceedingly small, and the bending stiffness matrix of a

quasi-isotropic laminate has a general character. This means that the delamination threshold load Pcr of a

cylindrical composite shell, can be calculated in a manner analogous to a flat plate:

Pcr =
√
32π2αGIICξmin (45)

which is founded on the energy balance principle, which states that crack extension occurs when the energy

available for crack growth is sufficient to overcome the resistance of the material. To start the calculation,

the matrix cracks can be tentatively neglected. In equation (45), GIIC is the critical mode II energy release

rate of the unidirectional material, as the delamination growth is dominated by the shearing crack extension
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mode. For the upper bound, α is equal to 1; for the lower bound, α depends on the Poisson’s ratio of the

laminate: α = (1+ νxy)/(3+ νxy). The parameter ξmin is determined by solving the following minimization

problem with respect to the delamination depth i in N possible interfaces and the orientation angle θ:

minimize ξ =

(
1

D1 +D2
− 1

D0

)−1

subject to i = 1, · · · ,N for 0 ≤ θ ≤ π

(46)

where D0 is the flexural rigidity for the undelaminated laminate, and D1+D2 is the total flexural rigidity of

the two delaminated sublaminates. More details on the calculation method are contained in Huang et al.1.

B. Matrix Cracking Analysis

Consider a simply supported narrow cylindrical shell in the undamaged state, it is assumed that the shell does

not undergo the snap-through buckling before the delamination threshold load; therefore, the deformations

and stresses in the shell can be determined through a small deflection analysis. Since the concentrated

point load leads to the stress singularity at the loading point, the impact load is supposed to be uniformly

distributed over a circular Hertzian contact zone. As shown by Timoshenko and Woinowsky-Krieger22, the

distributed load can be expressed in the form of a double Fourier series as follows:

q(x, y) =
∞∑

m=1

∞∑

n=1

amn sin
mπx

a
sin

nπy

b
(47)

amn =
8Pcr

abcγmn
J1(γmnc) sin

mπx0

a
sin

nπy0
b

with γmn = π

√
m2

a2
+

n2

b2
(48)

where a and b are the length and width of the shell, the resultant load is taken as equal to the upper bound

of the delamination threshold load Pcr, the center of the loading area is located at (x0, y0), c is the contact

radius, and J1(γmnc) is the Bessel function of the first kind with the argument γmnc. From the generalized

equation of Donnell (20), it follows that:

w(x, y) =
∞∑

m=1

∞∑

n=1

amn

bmn
sin

mπx

a
sin

nπy

b
(49)

bmn = π4D+
m4

a4R2S (50)

where the parameters D and S are defined as:

D = D11
m4

a4
+ 2H

m2n2

a2b2
+D22

n4

b4
, S = S22

m4

a4
+ 2J

m2n2

a2b2
+ S11

n4

b4
(51)
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Substituting equation (49) into the linearized biharmonic membrane equation (19) gives:

∇ 4
Sφ =

m2π2

a2R

∞∑

m=1

∞∑

n=1

amn

bmn
sin

mπx

a
sin

nπy

b
(52)

The stress function φ can be obtained through direct integration:

φ =
m2

π2a2RS

∞∑

m=1

∞∑

n=1

amn

bmn
sin

mπx

a
sin

nπy

b
(53)

Differentiating the displacement field w and the stress function φ with respect to the coordinates x and y,

the principal stresses in an arbitrary k-th ply can be calculated by means of the CLT.

Lately a maximum strain energy based failure criterion has been developed for the intralaminar failures

in the plies (see Huang23). On the lamina level, the three fundamental failure modes are the longitudinal

failure mode, the transverse failure mode and the shear failure mode. In point of fact, the longitudinal and

shear failure mode can be excluded in the current analysis, as the corresponding stresses and strains in the

plies usually remain beneath the critical values. Considering the transverse failure mode as a premature

non-critical mode, it can be supposed that there is no interaction between the different failure modes. For

a laminate with fiber dominated in-plane failure behavior, the maximum strain energy criterion can be

simplified to the maximum stress criterion. The occurrence of transverse matrix cracks due to the combined

bending and membrane stresses can be predicted on a ply-by-ply basis. After that, the transverse Young’s

modulus of the failed plies is reduced to zero. The delamination threshold load is recalculated by means of

equations (45) and (46), resulting in the definitive delamination threshold load. In principle, an iterative

loop leads to even higher accuracy. However, for many practical laminates, the improvement appears to

be very limited; moreover, the predictor-corrector procedure gives a conservative prediction. In the further

delamination propagation analysis, the effects of the stiffness degradation due to the matrix cracking are

neglected, as the laminate bending stiffness becomes dominated by the multiple delaminations, while the

laminate membrane stiffness is dominated by the fibers that remain intact.

C. Damage Zone Shape and Resultant Fracture Toughness

In this paragraph, the shape of the damage zone is determined through a linear deformation analysis of the

near field in the vicinity of the impact point, and the resultant fracture toughness of multiple delaminations

is proposed in a more general form in relation to the previous plate model. For this purpose, the damage

zone is artificially extended in both longitudinal and circumferential direction to form a cylindrical shell of
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sufficient size, and the impact load P is expressed in the form of a Fourier integral:

q(x, y) =
P

π2l2

∫ ∞

0

∫ ∞

0
cos

αx

l
cos

βy

l
dαdβ (54)

where δ(x, y) =
1

π2

∫ ∞

0

∫ ∞

0
cosαx cosβydαdβ is known as the Dirac delta function and l is an arbitrary

characteristic length. In this study, l is taken as equal to the shell radius R. Substituting equation (54) into

the generalized equation of Donnell (20), the following deflection field can be found:

w =
PR2

π2

∫ ∞

0

∫ ∞

0
g(α,β) cos

αx

R
cos

βy

R
dαdβ (55)

where the function g(α,β) is defined as:

1

g(α,β)
= D′ +

α4R2

S′ , D′ = D̃11α
4 +2H̃α2β2 + D̃22β

4, S′ = S22α
4 +2Jα2β2 + S11β

4, [D̃] =
n∑

i=1

[D̃∗
i ] (56)

where [D̃∗
i ] is the reduced bending stiffness matrix of the i-th delaminated sublaminate.

To eliminate the effects of boundary conditions on the local deformations, the long wavelength components

are left out by taking the lower limits of the double integral as equal to 2 (see 'Lukasiewicz24). The short

wavelength components damp out rapidly as the distance from the loading point increases; therefore, the

upper limits of the double integral can be taken as equal to 10. In brief, equation (55) can be evaluated in

the manner of a mid-pass filter, with α1 = β1 = 2 and α2 = β2 = 10:

w =
PR2

π2

∫ β2

β1

∫ α2

α1

g(α,β) cos
αx

R
cos

βy

R
dαdβ (57)

When the principal stiffness directions of the laminate are aligned with the longitudinal and circumferential

axes of the shell, it appears that the contours of equal deflections are by approximation concentric ellipses

that are symmetric with respect to the shell axes (see Figure 4). For an arbitrary ellipse, the semi-axes a0

θi

ρi

a0

b0

x

y

Figure 4. Typical equal deflection contours and idealized multiple delaminations
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and b0 satisfy the integral equation below:

∫ β2

β1

∫ α2

α1

g(α,β)

(
cos

αa0
R

− cos
βb0
R

)
dαdβ = 0 (58)

As there hold a0 ≪ R and b0 ≪ R, the Taylor series expansion cosx = 1− x2

2! +
x4

4! −
x6

6! + · · · can be applied

to obtain a closed-form solution of the ellipticity ratio λ0:

λ2
0 =

b20
a20

=

∫ β2

β1

∫ α2

α1

α2g(α,β)dαdβ

∫ β2

β1

∫ α2

α1

β2g(α,β)dαdβ

(59)

The impact damage develops in the most efficient possible way, whereby the maximum strain energy release

from the system is combined with the minimum fracture energy dissipation by the structure. Hence, it can

be assumed that the external contours of the damage zone coincide with the equal deflection contours.

The resultant fracture toughness of the multiple delaminations can be calculated by assuming that the

individual delaminations are elliptic and centered at the damage zone. Depending on which propagation

direction leads to more bending energy release, the orientation angle θi of the i-th delamination is taken equal

to the fiber orientation of the upper or lower adjacent ply. The ellipticity ratio λi for the i-th delamination

is determined by the reduced bending stiffness constants of two adjacent sublaminates:

λi = 4

√
D∗

22, i +D∗
22, i+1

D∗
11, i +D∗

11, i+1

(60)

The major axis ρi of the i-th delamination is given by:

ρ2i =

(
cos2 θi
a20

+
sin2 θi
b20

)−1

=
a0b0

λ0 cos2 θi + λ−1
0 sin2 θi

(61)

The ratio between the area of the i-th delamination and the area of the damage zone is:

ηi =
Ai

S
=

λi

λ0 cos2 θi + λ−1
0 sin2 θi

(62)

The resultant critical energy release rate GC for multiple delaminations becomes:

n∑

i=1

Ai = S
n∑

i=1

ηi ⇒ GC = GIIC

n∑

i=1

ηi (63)

It can be construed that GC represents the total amount of energy dissipated per unit area of the damage

zone.
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D. Simplified Membrane Stiffnesses of Damage Zone

In contrast with the delamination threshold load, the delamination propagation load is strongly affected by

the membrane behavior of the damage zone. It can be expected that the localized snap-through buckling

occurs in the damage zone because of the significantly reduced bending stiffness. In case the shell curvature

is such small that the localized snap-through buckling plays no part, the reader is referred to the previous flat

plate model. For the concentrated point load, in principle, the w = w0(1− ρ2 + ρ2 ln ρ2) type displacement

field has to be substituted into the biharmonic membrane equation (6) to find an exact stress function φ. For

the sake of mathematical convenience, the singular term ln ρ2 can be removed with the help of the Maclaurin

series expansion lnx = (x− 1)− (x−1)2

2 + (x−1)3

3 − (x−1)4

4 + · · · , 0 < x ≤ 2. In this way, approximations can

be obtained in the form of the first order, second order, and so forth. It can be seen that the displacement

field of the first order approximation w ≈ w0(1−ρ2)2 corresponds to a clamped elliptic shell under uniformly

distributed load. From a mechanics viewpoint, the ρ2 ln ρ2 type singularity arises solely out of the idealization

to the concentrated point load. Observe that the contact load is actually distributed in a small circular area

at the center, an attempt can be made to calculate the membrane deformations by discarding the singular

term. As the zero-th order Maclaurin approximation, the displacement field w = w0(1 − ρ2) for a simply

supported elliptic shell under uniformly distributed load is used to evaluate the membrane stiffness of the

elliptic shell.

Setting R1 → ∞ and R2 = R, the expression for the membrane energy (31) reduces to:

Um =
π2w2

0

12SΥ

(
b20
R

− 2w0

)2

(64)

Discarding the higher order terms yields the linearized prebuckling membrane stiffness of the damage zone:

U ′
m =

π2b40w
2
0

12SΥR2
⇒ K ′

m =
∂2U ′

m

∂w2
0

=
π2b40

6SΥR2
(65)

For the postbuckling membrane stiffness, it can be assumed that the middle surface is not stretched in

the circumferential direction, the maximum deflection w0 can be determined by mirroring the shell middle

surface (see Figure 5). With the help of the Taylor series expansion cosx = 1 − x2

2! + x4

4! − x6

6! + · · ·, the

following equation can be obtained:

w0 = 2R

(
1− cos

b0
R

)
≈ b20

R
(66)
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Substituting equation (66) into equation (64), the membrane energy in the damage zone becomes:

U ′′
m =

π2w4
0

12SΥ
(67)

resulting in the following simplified postbuckling membrane stiffness:

K ′′
m =

∂2U ′′
m

∂w2
0

=
π2w2

0

SΥ
(68)

By approximating the parabola w0 = 1 − y2/b20 with an arc of the radius R, the length calculation of the

parabola through integration is avoided, and the relation between w0 and b0 is therefore simplified to a great

extent. The practical advantage thereof is that the postbuckling membrane stiffness K ′′
m can be calculated

through a simple equation with a reasonable accuracy.

w0

b0

Radius : R

Figure 5. Isometric transformation

E. Energy Balance and Damage Area

Referring to Huang et al.1, the energy balance equation for the propagation of the multiple delaminations is

given by:

GC =
P 2

32π2

(
1

∑n+1
i=1 Di + Ψ2

− 1

D0 + Ψ1

)
(69)

where Ψ1 and Ψ2 are related to the prebuckling and postbuckling membrane stiffnesses of the damage zone

K ′
m and K ′′

m, respectively. Using the scaling factor 16π2/S from the bending stiffness, Ψ1 and Ψ2 become:

Ψ1 =
b40

96ΥR2
, Ψ2 =

w2
0

16Υ
(70)

As
∑n+1

i=1 Di + Ψ2 ≪ D0 + Ψ1 and
∑n+1

i=1 Di ≪ Ψ2, equation (69) can be reduced to a linear equation:

P =
√
2π2Υ−1GCw0 (71)
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The GC value can be determined through the following minimization problem, which combines the maximum

bending stiffness reduction with the minimum delamination propagation load:

minimize Λ =

∑n+1
i=1 Di

D0

√√√√ Υ̂

Υ

n∑

i=1

ηi

subject to n = 1, · · · , N

(72)

where n is the number of delaminations and N is the number of interfaces. The terms D0 and Υ̂ are used to

make the objective function Λ dimensionless, where the parameter Υ̂ is defined as Υ̂ = (3S11+2J+3S22)/8.

Superposed with the global shell deformations, the loading part of the load deflection curve becomes:

P − Pcr =
δ − δcr
Cp

with Cp = Cu +
√
2π2Υ−1GC (73)

where P is the impact load, Pcr is the delamination threshold load, δ is the total target deflection, Cu is

the undamaged target compliance and Cp is the compliance of the delamination propagation curve. On the

basis of equation (73), a similar load deflection curve can be constructed for the cylindrical shell as in the

case of the flat plate; therefore, the relations between the damage area S and the impactor kinetic energy

Ek as well as the peak impact load Pmax from the flat plate model remain applicable to the cylindrical shell:

S =
P 2
max − P 2

cr√
8π2Υ−1G3

C

(74)

S =
Γ

GC

H(Ek − Ecr)(Ek − Ecr) with Γ = 1− Cu

Cp
(75)

where Γ is the impact energy transfer factor, and H is the Heaviside step function.

Up to this point, the impact model has been extended from a quasi-isotropic flat plate to a cylindrical shell

with a more general lay-up. Following the same development philosophy, the model can be further extended

to a doubly curved shell or even a arbitrarily shaped shell. It is clear that various uncoupling techniques

have played an important role in achieving an efficient model: Selecting a symmetrical and balanced lay-up

or prescribing the out-of-plane displacement fields in a symmetrical way, the effects of the laminate couplings

are eliminated as much as possible. Modifying the boundary conditions, the localized deformation field is

uncoupled from the global deformation field. Dealing with the coupled membrane and bending deformations,

the membrane effects are neglected in the delamination threshold load, and the bending effects are neglected

in the delamination propagation load. For the complicated coupling effects, one may resort to the numerical

methods such as the finite element method or the finite difference method.
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V. Damage Tolerance Analysis

The ultimate strength of cylindrical composite shells under axial compression is closely connected with

various buckling mechanisms, which occur in a local or global manner. In this section, the critical stresses

are discussed for different buckling modes, followed by the postbuckling behavior of a squared cylindrical

shell. The residual compression strength is determined through a synthesis of the fundamental failure modes.

To elucidate the basic physical principles behind the complex buckling and postbuckling phenomena, the

equations are presented on the basis of an isotropic material. At the end, the buckling and postbuckling

solutions will be given for a symmetrical and balanced laminate. As the succinct isotropic equations can be

easily generalized to solve similar anisotropic problems, the detailed derivation of the anisotropic equations

will be omitted. The concept damage tolerance, as used in the context of this discussion, relates to the

reduction of the compression performance of cylindrical shell structures due to the presence of the BVID.

A. Localized Snap-through Due to Axial Compression

When a perfect isotropic cylindrical shell buckles into a symmetrical form in Figure 6, according to Lorenz17

the critical buckling stress would be:

σcr =
Eh√

3(1− ν2)R
, σcr ≈ 0.612

Eh

R
for ν =

1

3
(76)

In Timoshenko and Gere18, the following empirical formula can be found, where the critical stress is roughly

halved:

σcr = E
0.6

h

R
− 10−7R

h

1 + 0.004
E

σY P

, σcr ≈ 0.291
Eh

R
for duralumin (77)

For the material duralumin, the ratio between the Young’s modulus and the yield stress E/σY P is equal to

265. The simplified formula is obtained by neglecting the term 10−7R/h.

On the basis of the results presented in Section III, it is comprehensible that the localized snap-through

mode that involves a lower level of the deformation energy should lead to a lower buckling stress than the

symmetrical mode. In Figure 6, the localized snap-through mode is sketched in an isolated manner, whereas

the idealized overall buckling deformation pattern consists of many of the identical elliptic regions that are

packed in a regular array. Under the uniform axial compression, it can be expected that the axes of the

elliptic regions are aligned with the longitudinal and circumferential directions of the cylindrical shell. Using

the energy equation (36), it can be proven that the localized deformation field becomes energetically more

efficient, when the wavelength of the deformation pattern becomes smaller in the circumferential direction,

i.e. the utilization of Donnell’s theory in the buckling calculations is justified. Neglecting the term Φ′ and

23 of 41

American Institute of Aeronautics and AstronauticsSampe Conference, Beijing China, 6-8 May 2019 



Figure 6. Symmetrical and localized snap-through mode

linearizing the membrane energy at the point w0 = 0, the total strain energy in the localized quadratic

deflection field becomes:

∆U =
π2b40w

2
0

12SΥR2
+

2π2Φw2
0

S
(78)

Using the isometric transformation, the linearization at the point w0 = b20/R provides the same equation,

although the w0 value is different. The snap-through instability implies that the buckling stress has an upper

and a lower bound corresponding to the local maximum and minimum on the non-linear equilibrium path.

As a result of the linearization, the maximum and minimum points lead to the same buckling stress. Due

to the quadratic deflections, the work done by the membrane forces is:

∆T = −Nx

2

∫∫

S

(
∂w

∂x

)2

dS = −πb0Nxw2
0

2a0
(79)

where the minus sign before the integral is added so that ∆T can be expressed as a positive value. According

to the energy based buckling criterion:

∆U = ∆T (80)

the magnitude of the critical buckling load Ncr for the localized snap-through mode becomes:

Ncr =
b20

6ΥR2
+

4Φ

b20
(81)

By requiring ∂Ncr/∂b0 = 0 or using the inequality α+ β ≥ 2
√
αβ, equation (81) can be simplified to:

b40 = 24ΥΦR2 ⇒ Ncr ≥ 1

R

√
8Φ

3Υ
(82)

Physically this means that the membrane energy is equal to the bending energy at the bifurcation point.
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For an isotropic material, equation (82) can be rewritten as:

Ncr ≥ Eh2

R

√
2

9(1− ν2)

λ2
0 + 2ν + λ−2

0

3λ2
0 + 2 + 3λ−2

0

(83)

To obtain the lowest Ncr, equation (83) has to further minimized with respect to the ellipticity ratio λ0. It

turns out that the minimum of Ncr is associated with a circular buckled zone:

∂Ncr

∂λ0
= 0 ⇒ λ0 = 1 ⇒ Ncr ≥ Eh2

√
18(1− ν)R

(84)

From equation (82), it follows that the following relation between b0 and Rh is valid:

b20
Rh

=

√
32

1− ν
(85)

For ν = 1/3, the magnitude of the critical buckling stress σcr is:

σcr =
Ncr

h
≥ Eh

2
√
3R

≈ 0.289
Eh

R
(86)

It can be seen that equation (86) agrees well with equation (77). This confirms that the localized snap-

through mode is the lowest buckling mode. If ν = 1/3, Ncr becomes independent of λ0; therefore, λ0 can not

be determined through equation (83), but through equation (82) by minimizing b0 with respect to λ0. Also

in this specific case, there holds: λ0 = 1. As is known, the buckling strength of an unstiffened cylindrical

shell can be considered as its ultimate compression strength because of the unstable postbuckling state.

B. Global Buckling of Cylindrical Panel

This paragraph is concerned with the buckling behavior of a cylindrical shell containing an elliptic zone that

is representative of the BVID. It is assumed that the shell within the damage zone behaves like a perfectly

flexible membrane. As shown in Figure 7, the shell is simply supported along two generators and two circular

edges and uniformly compressed in the axial direction. The length and the curved width of the shell are a

and b, respectively. It is supposed that the damage zone is small compared with the shell radius R.

On the analogy of Navier’s solution for a rectangular flat plate, it is supposed that the shape of the

deflected surface can be represented by the following double trigonometric function:

w = w0 sin
mπx

a
sin

nπy

b
(87)

where m and n are the half-wave numbers. Using the calculation method presented in Huang et al.1, the
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Figure 7. Curved panel under compression

bending energy in the displacement field w is found to be:

∆Ub =
π4ζabDw2

0

8

(
m2

a2
+

n2

b2

)2

, ζ = 1− 4

ab

∫∫

S

(
sin

mπx

a
sin

nπy

b

)2
dS (88)

where ζ is the energy reduction factor. The integration is performed over the area S of the damage zone.

Using equation (53), the membrane energy in the displacement field w can be expressed as:

φ =
m2Ehw0

π2a2R

(
m2

a2
+

n2

b2

)−2

sin
mπx

a
sin

nπy

b
⇒ ∆Um =

ζm4bEhw2
0

8a3R2

(
m2

a2
+

n2

b2

)−2

(89)

Reducing equation (81) to N ′
cr = b20/(6ΥR2), it can be seen that the damage zone undergoes the localized

snap-through buckling in a very early stage of the compression process. Neglecting the contribution of the

membrane energy in the damage zone, the total strain energy in the displacement field w becomes:

∆U = ζ

[
π4abDw2

0

8

(
m2

a2
+

n2

b2

)2

+
m4bEhw2

0

8a3R2

(
m2

a2
+

n2

b2

)−2
]

(90)

To obtain a conservative prediction, the work done by the membrane forces due to the lateral deflections is

calculated as follows:

∆T = −Nx

2

∫ b

0

∫ a

0

(
∂w

∂x

)2

dxdy = −π2m2bNxw2
0

8a
(91)

From the energy principle it follows that the magnitude of the critical buckling stress is:

σcr = ζ

[
π2a2D

m2h

(
m2

a2
+

n2

b2

)2

+
m2E

π2a2R2

(
m2

a2
+

n2

b2

)−2
]

(92)

It can be seen that the buckling resistance of a cylindrical shell comprises a bending term and a membrane

term, where the bending term is dominant for a large R.
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Using again the inequality α+ β ≥ 2
√
αβ, the following is found for the symmetrical mode:

σcr ≥ 2ζ

√
DE

hR2
=

ζEh√
3(1− ν2)R

(93)

The minimum occurs under the condition α = β or Um = Ub. That is:

m2 − 2K
a

b
m+ n2 a

2

b2
= 0 (94)

where the parameter K is defined as:

K =
4
√

12(1− ν2)

2π

b√
Rh

(95)

The rational roots of the quadratic equation above are:

m =
a

b

(
K ±

√
K2 − n2

)
if K ≥ n (96)

When there is one half-wave in the circumferential direction, the integer n reaches its minimum value of 1.

Hence, the symmetrical mode occurs only if the following condition is satisfied: K ≥ 1.

For K < 1, the minimization of equation (92) leads to a square buckle and the lowest critical buckling

stress is:
∂σcr

∂m
= 0 ⇒ m =

a

b
⇒ σcr = ζE

[
π2h2

3(1− ν2)b2
+

b2

4π2R2

]
=

ζπ2(1 +K4)Eh2

3(1− ν2)b2
(97)

where the longitudinal wave is located in relation to the damage zone in such a way that the factor ζ reaches

its minimum. It can be construed that equation (97) describes the critical buckling stress of the narrow

shell mode, in which the buckling behavior of a cylindrical shell resembles that of a rectangular plate. This

explains why the bending energy prevails over the membrane energy.

On the basis of equation (85), the localized snap-through buckling occurs under the following condition:

K ≥
4
√
24(1 + ν)

π
(98)

If ν = 1/3, then K ≥ 0.757. As the localized snap-through mode occurs at K ≥ 0.757, the symmetrical mode

with K ≥ 1 does not occur under normal circumstances, the narrow shell mode occurs in the reduced range

of 0 ≤ K < 4
√
24(1 + ν)/π. From this analysis, it is clear that Donnell’s theory is applicable in the most

shell buckling calculations. When a long cylindrical shell buckles in the manner of a slender beam, Donnell’s

theory becomes inaccurate, and one may employ Love’s theory or revert to the Euler buckling theory.
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C. Postbuckling Analysis of Cylindrical Shell

Recall the cylindrical shell in Figure (7), the length and the curved width are now both equal to a, the

curvature parameter K ranges from 0 to 4
√
24(1 + ν)/π, and the damage zone is set aside for convenience.

The compression loads are transmitted to the shell via the two horizontal edges by two rigid blocks. The

two vertical edges that are allowed to move freely in the in-plane directions remain straight during the

deformations. During the analysis, the Poisson’s ratio ν of the material is taken as equal to 1/3.

Using a curvilinear coordinate system x-y at the center of the shell, the out-of-plane displacement field

w from equation (87) is rewritten as:

w = w0 cos
πx

a
cos

πy

a
(99)

With regard to the membrane deformations, the stress function φ that satisfies the boundary conditions

consists of five parts:

φ = φ1 + φ2 + φ′
2 + φ3 + φ′

3 (100)

The stress function φ1 that represents the forced in-plane response to the out-of-plane displacement w can

be obtained by substituting equation (99) into the non-linear biharmonic membrane equation (6):

∇4φ1 =
π2Ehw0

a2R
cos

πx

a
cos

πy

a
− π4Ehw2

0

2a4

(
cos

2πx

a
+ cos

2πy

a

)
(101)

φ1 =
a2Ehw0

4π2R
cos

πx

a
cos

πy

a
− Ehw2

0

32

(
cos

2πx

a
+ cos

2πy

a

)
(102)

Substituting w and φ1 into equations (3) and (4), the axial displacement u1 at x = a/2 and the circumferential

displacement v1 at y = a/2 become:

u1 = −π2w2
0

16a
− aw0

6πR
cos

πy

a
, v1 = −π2w2

0

16a
+

5aw0

6πR
cos

πx

a
(103)

To nullify the cosine component in u1, the stress function φ2 is introduced, which leads merely to in-plane

deformations:

φ2 = f(x) cos
πy

a
(104)

Substituting φ2 into the biharmonic membrane equation (6) gives:

∇4φ2 = 0 ⇒ d 4f

dx4
− 2

π2

a2
d 2f

dx2
+

π4

a4
f = 0 (105)
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Referring to Timoshenko and Goodier25, the general solution of the differential equation (105) is given by:

f = C1 cosh
πx

a
+ C2 sinh

πx

a
+ C3x cosh

πx

a
+ C4x sinh

πx

a
(106)

Because of the symmetry, the C2 and C3 terms that contain odd functions should vanish. On the basis

of the Taylor series expansions coshx = 1 + x2

2! + x4

4! + x6

6! + · · · and sinhx = x + x3

3! + x5

5! + x7

7! + · · ·, the

term C4x sinh(πx/a) has a similar behavior as the higher order terms of C1 cosh(πx/a). It can be seen

that the first order term of C1 cosh(πx/a) corresponds to the intended membrane stress distribution with

Nx = −C1π2/a2 cos(πy/a) and Ny = 0. Discarding the higher order terms that do not satisfy the boundary

conditions, φ2 becomes:

φ2 = C1 cos
πy

a
(107)

The accompanying displacement u2 for the edge x = a/2 is:

u2 = − π2C1

2aEh
cos

πy

a
(108)

The constant C1 is determined by comparing u1 with u2:

u1 + u2 ≡ −π2w2
0

16a
⇒ C1 = −a2Ehw0

3π3R
(109)

The stress function φ3 that corresponds with the remaining uniform axial compression is:

φ3 =
Eh

2a

(
π2w2

0

8a
− δ

)
y2 (110)

where δ is the total end shortening of the shell. The stress functions φ′
2(x) and φ′

3(x) are of the same form

as φ2(y) and φ3(y). Using φ′
2, the cosine component in v1 is nullified. With φ′

3, the resulting forces along the

vertical edges can be adjusted to 0; therefore, φ′
2 + φ′

3 does not produce a contraction in the axial direction.

As the following relations are valid: ∂2φ′
2/∂y

2 = 0 and ∂2φ′
3/∂y

2 = 0, there is no need to derive the exact

expressions of φ′
2 and φ′

3 in the current analysis.

The strain energy that is associated with the displacement field w and the stress function φ1 is given by:

∆U =
π4Ehw4

0

128a2
− Ehw3

0

18R
+

a2Ehw2
0

32R2
+

3π4Eh3w2
0

64a2
(111)

Using the superposed stress function φ, the work done by the axial membrane forces due to the displacement
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field w can be calculated as follows:

∆T = −1

2

∫ a
2

− a
2

∫ a
2

− a
2

∂2φ

∂y2

(
∂w

∂x

)2

dxdy = −3π4Ehw4
0

128a2
+

π2Ehδw2
0

8a
(112)

On the basis of the energy balance principle, the following relationship can be derived between the overall

compressive strain ε and the maximum deflection w0:

∆U = ∆T ⇒ ε =
δ

a
=

π2w2
0

4a2
− 4w0

9π2R
+

a2

4π2R2
+

3π2h2

8a2︸ ︷︷ ︸
εcr

(113)

in which the critical buckling strain εcr can be retrieved. For the stress function φ, it follows that the total

compressive load in its non-dimensional form is given by:

N̄ = − 1

Eha

∫ a
2

− a
2

∂2φ

∂y2
dy, x =

a

2
⇒ N̄ = ε− π2w2

0

8a2
− 2w0

3π2R
(114)

For the critical buckling load, the following holds true: N̄cr = εcr. To construct the postbuckling curve,

equations (113) and (114) can be rewritten as:

ε− εcr =
π2w2

0

4a2
− 4w0

9π2R
, N̄ − N̄cr =

π2w2
0

8a2
− 10w0

9π2R
(115)

where w0 can be varied between 0 and a distance several times as large as the shell thickness h. The

postbuckling curve ends at the point when the maximum stress level in the shell reaches the compression

strength of the material σm. In the buckled configuration, the maximum compressive stresses are located at

the vertical edges. Hence, the maximum end shortening can be calculated as follows:

δmax

a
=

σm

E
(116)

Using equations (113) and (114), δmax can be further converted to the maximum overall strain εmax and the

maximum applied stress σmax.

In Figure 8, the load deflection curves are plotted for a square flat plate and two cylindrical shells. To

demonstrate the initial postbuckling behavior, N̄ and ε are normalized with respect to the non-dimensional

buckling stress N̄p
cr and strain εpcr of the flat plate. For the complete postbuckling range, N̄ and ε are

normalized with respect to their own N̄cr and εcr, so that the different curves do not intersect with each

other. Without the plastic deformations, the flat plate exhibits a linear postbuckling behavior, where the

non-dimensional tangent stiffness is equal to 1/2. In this case, the current model gives the same result as

Koiter’s initial postbuckling theory, with which the slope and the curvature of the second equilibrium path
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Figure 8. Normalized load deflection curves (h = 1 mm, a = 200 mm)

at the bifurcation point can be determined through a higher order linearization. For the cylindrical shells,

the reversal of curvature in the circumferential direction manifests itself in the transient effect whereby the

postbuckling curves first decrease and subsequently increase with the increasing overall strain. In theory,

the initial postbuckling state of the narrow shell mode is unstable, unless the shell radius becomes infinite.

In practice, such small-scale instability can be avoided through a variety of creative solutions, e.g. through

the nonlinear deformation behavior of the polymer matrix, by permitting a minimized initial deflection or

even using a smart structure concept with piezoelectric sensors and actuators. In the region far beyond the

bifurcation point, the applied load is virtually linearly related to the in-plane deflection.

D. Failure Mode Synthesis

If the final collapse of an impact damaged cylindrical shell as shown in Figure (7) is controlled by the material

failure mode, the residual compression strength can be calculated as follows:

σ∗
max =

(
1− b̃

b

)
σm (117)

where b̃ is the curved damage zone width. The compressive strength σm of a laminate can be calculated

through the progressive damage analysis (see Huang23). From the damage mechanics viewpoint, the notch

insensitivity can be construed as sort of ideally plastic behavior of the laminate, i.e. the compressive stress

in the laminate remains on a constant level of σm beyond the fiber failure. After the localized snap-through

buckling, the damage zone can be treated as a cutout. The stress concentration around the damage zone

initially plays a role in the stress distribution in the shell. With the increasing compression load, the damage

starts to propagate over the smallest cross-section in the undamaged shell portion. In this way, a uniform

stress distribution is gradually developed in the extended damage zone and the shell reaches the maximum

load-carrying capacity, resulting in the simple linear relationship above. For the notch sensitive cases, the
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mechanisms for damage progression and accumulation warrant closer investigation; a few models involving

the finite element method appear to be available in the literature (see e.g. Matthews et al.26).

The opposite situation is that the impact damaged cylindrical shell buckles before the material failure.

The transition from the controlled postbuckling behavior to the highly unstable postbuckling behavior occurs

at the point K = 4
√

24(1 + ν)/π, where the narrow shell mode is taken over by the localized snap-through

mode. Combining the two buckling modes with the material compression failure mode, the residual strength

of the impact damaged cylindrical shell can be expressed as:

σult =

⎧
⎪⎨

⎪⎩

min(σ∗
max,σmax) if K < 4

√
24(1 + ν)/π

min(σ∗
max,σcr) if K ≥ 4

√
24(1 + ν)/π

(118)

where σmax is the postbuckling strength of the narrow shell mode and σcr the critical buckling strength of

the localized snap-through mode. For an optimal accuracy of σmax, the weakening effects of the damage

zone can be taken into account in the postbuckling analysis in an analogous way as the buckling analysis.

E. Anisotropic Stability Equations

With a thorough understanding of the underlying physics, it is a straightforward task to perform the damage

tolerance analysis of an anisotropic shell by following the same calculation procedures as in the previous

paragraphs. For the sake of brevity, the key equations that require refinements are summarized here.

When a cylindrical shell buckles in the localized snap-through mode, the critical load amplitude Ncr is

given by equation (82). In the anisotropic case, equation (84) has to be generalized to:

∂Ncr

∂λ0
= 0 ⇒ (D11J − 3D12S22)λ

4
0 + 3(D11S11 −D22S22)λ

2
0 + (3D12S11 −D22J) = 0 (119)

It can be seen that the buckling deformation pattern and the extensional and bending stiffnesses are coupled

to each other in a rather complicated way.

If the narrow shell mode occurs, the anisotropic critical buckling load Ncr takes the following form:

Ncr = ζ

(
π2a2D
m2

+
m2

π2a2R2S

)
(120)

As n = 1, equation (120) is minimized with respect to m (For clarity, D and S are functions of m.). If the

bending term is much larger than the membrane term or there holds:
D22

D11
≈ S22

S11
, m becomes equal to

a

b
4

√
D22

D11
; otherwise, the equation

∂Ncr

∂m
= 0 can be solved using a numerical root finder. When the shell is

isotropic and perfect, equation (120) reduces to the buckling solution in Timoshenko and Gere18. When the
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shell radius R goes to infinity, equation (120) reduces to the buckling solution of rectangular flat plates in

Huang et al.1, where the bending stiffness of the damage zone is entirely neglected.

Consider a rectangular cylindrical shell, the anisotropic postbuckling analysis is carried out on the basis

of the following out-of-plane displacement field:

w = w0 cos
πx

a
cos

πy

b
(121)

The stress functions that describe the membrane deformations are given by:

φ1 =
b2w0

π2RZ
cos

πx

a
cos

πy

b
− a2w2

0

32b2S22
cos

2πx

a
− b2w2

0

32a2S11
cos

2πy

b
(122)

φ2 = −2b2w0

π3RZ

(
1 +

b2S12

a2S11

)
cos

2πy

b
(123)

φ3 =
1

2aS22

(
π2w2

0

8a
− δ

)
y2 (124)

where the parameter Z is defined as:

Z =
b2

a2
S22 + 2J +

a2

b2
S11 (125)

The generalized relationships between ε, w0 and N̄ are as follows:

ε =
π2w2

0

16a2

(
2 +

a4

2b4
+

3S22

2S11

)
− 8S22w0

π2RZ

(
1

9
− b2S12

2a2S11
+

a2S12

6b2S22

)
+ εcr (126)

N̄ =
b

a

[
ε− π2w2

0

8a2
− 4S22w0

π2RZ

(
1 +

b2S12

a2S11

)]
(127)

where εcr can be calculated using equation (120). If the shell buckles in the narrow shell mode, it can be

seen that the second equilibrium path is dominated by the membrane stiffnesses, whereas the bifurcation

point is mainly controlled by the bending stiffnesses.

So far, a general predictive methodology for the compression strength of composite cylindrical shells

has been developed through the energetic approach. On the basis of the present stability analysis, it can be

expected that there will be an increasing trend to design composite compressive members in the postbuckling

region, where the localized snap-through mode is prevented to fully utilize the material strength. From a

practical standpoint, the impact resistance and damage tolerance analyses can be further integrated with

each other so that composite designs can be tailored to maximize the overall performance, as highly impact

resistant structures may not be very damage tolerant and vice versa.
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VI. Experimental Verification

In this section, the predictive accuracy of the analytical model is demonstrated on the basis of a series

of curved panel impact and CAI experiments. The experiments were designed with the primary aim to gain

more insight into the impact induced damage development in cylindrical shells; therefore, the experiments

are highly suitable for the verification of the analysis method with regard to impact resistance. As the panels

have a strongly curved shape and possess a relatively large bending rigidity, the buckling mechanisms do

not occur during the experiments; therefore, the results obtained are used to validate the damage tolerance

solution involving the material failure mode. In Section V, the buckling stress of the localized snap-through

mode has been shown to agree with the empirical formula, and the buckling and postbuckling solutions of

the narrow shell mode have been theoretically verified on the basis of the existing solutions.

A. Experimental Procedure

The curved panels are manufactured from two thermoplastic composite materials. One is carbon fiber (T300)

reinforced polyetherimide (PEI), consisting of 68% by volume of continuous fiber and 32% resin. The other is

Aromatic Polymer Composite (APC-2), which is based on 62% by volume of carbon fiber (AS4) impregnated

with a polyetheretherketone (PEEK) matrix. The T300/PEI and APC-2 prepregs are first compression

molded to laminates in a Fontijne TP 1000 press using the manufacturer’s recommended processing cycles.

The laminates are subsequently thermoformed to the curved panels using a rubber molding technique under

optimized conditions. The panels have a [452, 02,−452, 902]s quasi-isotropic lay-up, and their dimensions are

specified in Figure 9.

0◦

90◦

101.6
75.0

152.4

17.5

T300/PEI : 2.32

APC-2 : 2.08

Figure 9. Dimensions of curved panel in mm, modified impact and CAI test fixture
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The impact experiments are conducted on Dynatup 8250 drop weight impact machine, where the panels

are mounted on the support fixture by way of a steel window frame. During the impact events, the panels

are simply supported along the two rectilinear edges. The mass of the impactor is 3.035 kg, its diameter is

20 mm, and the nominal values of the impact energy are 2.5, 5, 10, 15 and 20 J. The damage area in the

impacted panels is measured using a ultrasonic C-scanner. For the damage patterns, several impacted panels

are cross-sectioned and examined under optical microscopes. The post-impact compression experiments are

performed using a SCHENCK 250 kN tensile testing machine under a displacement controlled condition.

The panels are simply supported between the knife edges along the vertical sides. The top and bottom

edges of the panels are nominally clamped. For all tests, the compression speed is 0.1 mm/min. A detailed

description of the experimental procedure including the design of the curved panels can be found in Huang27.

B. Delamination Initiation

From the load deflection curves in Figure 10, it can be observed that the loading curves exhibit the same

bi-linear form as in the previous flat plate experiments (see Huang et al.1). The non-linear points, at which

the loading curves start to depart from their initial linear parts, can be determined on the basis of the

lo
ad

[k
N
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N
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T300/PEI APC-2Batch 1 Batch 1

deflection [mm] deflection [mm]
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Figure 10. Experimental load deflection curves
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intersection points of the best fit straight lines. In Table 1, an overview of the delamination threshold loads

is presented, where the experimental values are basically the impact load levels at the non-linear points and

the theoretical values are given by the flat plate model and the cylindrical shell model. Although there are

small differences in the calculated maximum stresses and the damage states in the plies, the two models

appear to give practically similar predictions for the delamination threshold loads. It can be established that

the theoretical and experimental results are in good agreement with each other. Compared with the test

values, the average values of the upper and lower bounds have provided an accuracy above 83.5%.

Table 1. Theoretical vs experimental delamination threshold loads

T300/PEI panels

Model type Condition of different layers Lower bound Upper bound Average Test value

Plate model 45× 0× −45
√
90×2 −45× 0× 45× 0.84 kN 1.33 kN 1.08 kN 1.0 kN

Shell model 45× 0× −45
√
90×2 −45× 0× 45× 0.84 kN 1.33 kN 1.08 kN

APC-2 panels

Model type Condition of different layers Lower bound Upper bound Average Test value

Plate model 45× 0× −45
√
90

√

2 −45× 0× 45× 1.03 kN 1.63 kN 1.33 kN 1.6 kN

Shell model 45× 0× −45
√
90

√

2 −45
√
0× 45× 1.03 kN 1.64 kN 1.34 kN

*× : the layer contains transverse matrix cracks;
√

: the layer is undamaged.

C. Delamination Propagation

The results of the resultant fracture toughness calculations are summarized in Table 2, where n is the

number of delaminations, Λmin is the local minimum of the objective function, λ0 is the ellipticity ratio of

the damage zone and GC is the resultant critical energy release rate. For the T300/PEI panels, the global

minimum of Λmin is first reached at 4 delaminations, and GC becomes therefore equal to 3.7 kJ/m2. For

the APC-2 panels, the global minimum occurs at 6 delaminations, and this gives a GC value of 7.0 kJ/m2.

In the previous study, the GC values for the T300/PEI and APC-2 flat plates are found to be 2.6 and 3.0

kJ/m2, respectively. The microscopic study confirms that the impacted curved panels indeed contain more

delaminations compared with the corresponding flat plates. For the T300/PEI panels, the C-scan results

show that the ellipticity ratio of the damage zones varies from 0.64 to 0.84. For the APC-2 panels, the

ellipticity ratio varies from 0.52 to 0.84, when the panels of 2.5 and 2.6 J are excluded (In these two case,

the damage zones are relatively small and approximately circular.). This means that the linear near field

analysis predicts reasonably well the ellipticity ratios of the damage zones.
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The theoretical and experimental slopes of the delamination propagation curves are listed in Table 3,

showing that the actual slopes are amply overestimated by the flat plate model, and they are more accurately

predicted by the cylindrical shell model. In Figure 11, the damage area S is plotted against the peak impact

load Pmax and the impact energy E. In the results from the flat plate model, it is a pure coincidence that

the T300/PEI energy graph and the APC-2 load graph correlate with the measurements, as the errors in the

parameters such as GC and Υ can compensate for each other. As expected, the T300/PEI load graph and the

APC-2 energy graph deviate significantly from the measurements. Among the results from the cylindrical

shell model, the following theoretical graphs are found to be in satisfactory agreement with the experimental

data: the T300/PEI energy graph, the APC-2 load graph and the APC-2 energy graph. It can be seen

that these calculated curves go right through the middle of the measured data points that have a certain

scattering. In the worst case of the T300/PEI load graph, a sizeable improvement in the predictive accuracy

has been achieved compared with the plate model. That the calculated values in this particular case are

slightly lower than the measured values can be explained by the occurrence of small-scale fiber breakage in

the 0◦ plies, as the fiber tensile strength of T300 carbon fiber is relatively low. For illustrative purposes,

the dotted curve is added, which can be produced by decreasing the longitudinal stiffness of the 0◦ plies.

In brief, the current model is capable of providing adequate predictions of the process of impact induced

damage development in cylindrical composite structures, whereas the previous model may only serve as a

rapid tool for the determination of the delamination threshold load.

Table 2. Determination resultant critical energy release rate

T300/PEI APC-2 Location delaminations

n Λmin λ0 GC Λmin λ0 GC Sublaminates

1 0.029 0.642 1.6 kJ/m2 0.048 0.704 1.8 kJ/m2 [45,0,-45],[902,-45,0,45]

2 0.015 0.639 1.6 kJ/m2 0.018 0.645 1.9 kJ/m2 [45,0,-45],[902],[-45,0,45]

3 0.014 0.635 2.7 kJ/m2 0.016 0.631 3.1 kJ/m2 [45,0,-45],[902],[-45],[0,45]

4 0.011 0.618 3.7 kJ/m2 0.013 0.614 4.2 kJ/m2 [45,0],[-45],[902],[-45],[0,45]

5 0.011 0.608 4.4 kJ/m2 0.013 0.605 6.1 kJ/m2 [45,0],[-45],[902],[-45],[0],[45]

6 0.011 0.597 6.1 kJ/m2 0.012 0.594 7.0 kJ/m2 [45],[0],[-45],[902],[-45],[0],[45]

Table 3. Slopes of delamination propagation curves

Specimens Experimental Plate model Shell model

T300/PEI 0.50 kN/mm 1.05 kN/mm 0.61 kN/mm

APC-2 0.61 kN/mm 0.94 kN/mm 0.67 kN/mm
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Figure 11. Damage area as function of peak impact load and impact energy

D. Post-impact Compression

As expected, the non-impacted panels fail at the top edge, and the measured failure stress σ ′
m is slightly lower

than the actual laminate strength σm because of local imperfections. The impacted panels fail through the

middle where the damage zone is located, and the damage has mainly extended in the direction perpendicular

to the compression direction. In Figure 12, the residual compression strength is plotted against the damage

zone width, one as a percentage of the measured undamaged strength and the other as a percentage of the

total panel width. It turns out that the data points can be scaled onto a single linear master curve. The

short plateau in the beginning can be explained by the fact that σ ′
m is used as the reference strength instead

of σm. The experimental results support the theoretical predictions that the panels fail due to the material

compression failure mode and the residual compression strength varies linearly with the damage zone width.

In point of fact, the CAI tests of flat plates using an anti-buckling guide yields similar results as the current

tests, as there occurs the same failure mechanism in the two situations.
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VII. Conclusions

In the present study, a physically well-founded model has been developed for the impact resistance and

damage tolerance characteristics of cylindrical composite shells. The general conclusions are as follows:

1. For thin elastic shells, Love’s theory is general, parsimonious and accurate. The theory is consistent

with the 3D elasticity theory, the 2D plate theory and the 1D beam theory, and can be reconciled with

other existing shell theories with varying degrees of complexity. As a baseline theory, Love’s theory can

be extended to account for the material anisotropy and geometrical non-linearity. If the wavelength of

the deformations is limited, Love’s theory can be further reduced to Donnell’s theory, which can still

find a wide range of applications in the engineering practice. It appears that the use of the Airy stress

function is a convenient and effective way to calculate the membrane deformations and stresses.

2. The large deflection analysis reveals that the snap-through buckling is a manifestation of a strong

geometrical non-linearity, whereby the membrane deformations contain an inherent instability that is

connected with the convexity concavity transition of the shell surface.

3. With regard to the impact resistance, various analytical solutions that were derived for flat plates

remain applicable for cylindrical shells, if the following parameters are adapted: the damage state due

to matrix cracking, the ellipticity of the damage zone, the resultant critical energy release rate and the

membrane stiffness of the damage zone. Compared with a flat plate, the curvature of a shell leads to

quantitative rather than qualitative changes in the process of impact induced damage development.
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4. The buckling behavior of thin cylindrical shells is characterized by comparatively short waves in both

the longitudinal and circumferential directions. When the shell curvature increases, a transition occurs

from the narrow shell mode to the localized snap-through mode. The energy balance equation that

applies to the bifurcation point remains valid for the entire postbuckling path. The derivation of the

buckling and postbuckling solutions through the energy method is appreciably more expeditious than

by solving the governing equilibrium equations.

5. The analytical model proposed is expected to be beneficial to bridge the gap that frequently exists

between the material database and the full-scale component response in the field of aerospace design.

It is self-evident that composite shell structures exhibit considerably more complex failure behavior

compared with their metallic counterparts. The point illustrated here is the fact that the strength

characteristics of composite shell structures remain excellently analyzable, thereby enabling highly

efficient designs to be realized that are safe against multiple failure mechanisms.
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14Kirchho↵, G. R., “Über das Gleichgewicht und die Bewegung einer elastischen Scheibe,” Journal für die reine und

angewandte Mathematik , Vol. 40, 1850, pp. 51–88.

15Riks, E., “An incremental approach to the solution of snapping and buckling problems,” International Journal of Solids

and Structures, Vol. 15, 1979, pp. 524–551.

16Ventsel, E. and Krauthammer, T., Thin plates and shells - Theory, analysis, and applications, Marcel Dekker, New York,

2001.
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